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Summary 

Rules which have been employed to explain and predict solvent prop- 
erties of lithium battery electrolytes are described and results reviewed. The 
equilibrium behavior of moderate to high concentration electrolyte solutions 
is also reviewed. Recent theoretical approaches to explain the behavior are 
discussed, and a new theory incorporating contact ion pair concepts into an 
advanced statistical theory for free ions is proposed. 

Introduction 

The role of the electrolyte solution in lithium batteries is central. As 
the medium to carry the internal. current, the electrolyte solution must 
have adequate conductivity. It also must be stable, chemically and electro- 
chemically, to all other materials in the battery. Because of these require- 
ments, the solvents for use with lithium batteries are the dipolar aprotic class 
of organic and inorganic solvents. This paper will discuss the rules which 
the author has found to be useful in dealing with mixtures of solvents. 
The paper will also discuss the application of recent theoretical advances 
to the structure of electrolyte solutions within this class of solvents. 

Solvent properties 

It has been found after many years of experimentation that single 
solvents often do not have the required combination of physical properties 
to give satisfactory electrolyte solutions for lithium batteries. In conse- 
quence, an investigation of mixture rules has been undertaken in an attempt 
to bring some order into the search for mixed solvent systems and to help 
to understand why some mixtures are more successful than others. 

Table 1 gives the mixture rules which have been found to be most 
successful in explaining the data for solvents of interest. The first rule for 
molar volumes simply gives the ideal solution relationship. This rule has 
been found to be accurate to about 1% in reproducing data in systems of 
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TABLE 1 

Mixing rules for solvents 

1. Molar volume of mixture (V,, cm3/mole) 

v,=xrvr +x*v, +... 

xi = mole fraction component i 
uj = molar volume component i 

2. Average molecular weight of mixture (M,, g/mole) 

M,=xlM, +x,M, +... 
Mi = Molecular weight of component i 

3. Density of mixture (p,, g/cm3) 

&, = M,IV, 

4. Dielectric constant of mixture (em) 

e,=yrq +y2e2 +... 
yi = XiVi/Vm = Volume fraction component i 
pi = dielectric constant component i 

5. Viscosity of mixture (rj,, Poise) 

Log r)m = x1 log ?jl +x2 log Q2 + . . . 
Ti = viscosity component i 

interest. It does not necessarily imply that the solutions are, in fact, ideal. 
It is often the case that mixtures with small or negligible excess volumes and 
excess entropies still have significant excess enthalpies. The second and 
third rules from Table 1 are simply useful in obtaining the estimated density 
of the mixture in combination with rule 1. 

Rule 4 of Table 1 for the dielectric constant is derived from the fact 
that the latter is a volume related property, so that additivity is shown for 
the volume fraction of each component in an ideal mixture [ 11. The accu- 
racy of this relation has been found to be within about 5% for solutions of 
interest for lithium batteries. 

Rule 5 of Table 1 for viscosity is not a theoretically exact relationship 
for ideal solutions. It does, however, have some justification from the hole 
theory of liquids [2] and has been found to reproduce experimental viscos- 
ity data on solutions of interest within about 8%. 

Results presented in ref. 3 show how well these rules apply to several 
liquid mixtures composed of dipolar aprotic solvent components. The molar 
volume and dielectric constants are well within the accuracy needed for 
semiquantitative judgments on the possible usefulness of a mixture. The 
accuracy of the viscosity rule is not as good, but as a general guide it is still 
quite useful. It is important to note that the logarithmic rule for viscosity 
compared with the volume fraction rule for dielectric constant causes the 
viscosity of a mixture to fall more rapidly than the dielectric constant 
starting with a viscous, high dielectric constant component and adding a 
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low dielectric constant, fluid component. It is this fact which allows more 
flexibility in the solvent choice when mixtures are used rather than single 
solvents. 

One other property of importance is the donicity of the solvent in 
terms of the Lewis base theory. It appears from the author’s work on ion 
pair association constants that the donicity of the solvent in a solvent 
mixture is governed by the stronger donor solvent as long as there is enough 
of this solvent present to fully coordinate with the Lewis acid present in the 
system, e.g., lithium ions. 

Electrolyte solution properties 

Much progress has been made in recent years toward understanding 
the equilibrium properties of concentrated electrolyte solutions. First of all 
the Monte Carlo method has been applied to the primitive model electrolyte 
to calculate radial distribution functions and thermodynamic properties. 
This has allowed various statistical mechanical theories to be compared with 
“experimental” data on this hypothetical system without having to be 
concerned with complicated structural effects which may arise from real 
solvents and salts. In other words the Hamiltonian for the theory matches 
that for the “real” system. Theories such as the hypernetted chain (HNC), 
the Percus-Yevick theory or the mean spherical approximation (MSA), 
then, are approximate solutions to the Hamiltonian embodying varying 
assumptions. Of the above theories, the HNC theory has been found to give 
the best agreement with radial distribution functions from Monte Carlo 
calculations, although all the new theories give reasonable agreements with 
Monte Carlo results [4] for osmotic and activity coefficients. The MSA 
theory has the great advantage over other theories that the principle results 
can be described in closed form, and thus numerical data can be obtained 
without extensive calculations [4,5]. Another feature of all of the above 
theories is that no specific account is taken of ion pairs. However, Friedman 
and Larsen [6] have shown that a running coordination number can be 
defined for the HNC theory which corresponds rather well to the concentra- 
tion of ion pairs (as defined by the Bjerrum theory) at low salt concentra- 
tion, thus bringing these diverse theoretical approaches into closer concep- 
tual frameworks. 

Ebeling and Grigo [7] have taken the fusion of these concepts a step 
further. They have used a modified Bjerrum theory to define the ion pair 
concentration in the solution and the MSA theory to define the activity 
coefficients of the free ions. This approach leads to some very interesting 
results. For moderate to low dielectric constant liquids the degree of disso- 
ciation of ion pairs was found to go through a minimum as a function of 
concentration. This result was described as a redissociation of ion pairs and 
is caused by the lowering of the activity coefficient of the free ions. The 
Bjerrum theory missed this effect because the Debye-Huckel theory was 
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used to calculate the activity coefficients. There are two problems with this 
theory. The first is a fundamental one because the portion of phase space 
allocated to free ions extends into that portion of phase space allocated to 
ion pairs and this must result in an overemphasis on the effects of the free 
ions. This could be avoided in an exact Bjerrum theory by taking the dis- 
tance of close approach of the free ions to be the Bjerrum length. Another 
problem with the theory is that no specific solvent effects are taken into 
account and thus no distinction between contact and solvent separated ion 
pairs can be made. 

An approach to remedy both of these shortcomings follows. The 
contact ion pairs can be defined as resulting from the displacement reac- 
tion of a solvent molecule in the solvation sheath of the cation by the 
approaching anion [ 81. As shown previously, this approach can give contact 
ion pair concentrations in good agreement with spectroscopically measured 
values. Then the free ion distribution can be calculated by MSA theory 
using the solvent separated distance as a distance of closest approach for the 
MSA theory. The mass action law for the association constant for contact 
ion pairs, KA , is 

KA = (1 - o)/02cf2 (1) 

where o is the degree of dissociation of the contact ion pairs, f is the mean 
activity coefficient for the free ions and c is the concentration of added salt. 
Equation (2) gives the expression for determining KA from the solvent/salt 
properties 

KA = (4nlvp3/6000) { [exp(b’)/b’] (1 + l/b’ + 2/b’2) - 

- [exp(b)/b] (1 + l/b + 2/b2) -Ei(-b’) - 

-Ei(-b)} exp(koW/RT) 

where : 

(2) 

b = z2e2/a,egkT, b’ = z2e2/a,‘e,ekT, W = (DN, - DN,), 

- Ei(-x) = x [exp(u)/u]du, and /3 = z2e2/eoeKT 
s -00 

and where e. is the vacuum dielectric constant, E is the dielectric constant, 
a0 is the sum of anion and cation radii, d, is the solvent diameter, DN, and 
DN, are the donor numbers of solvent and anion, and kG and ao’ are em- 
pirically determined parameters for alkali salts [9]. Equation (3) gives the 
MSA result for the activity coefficient, 

ln f = -(z2e2/4moekTR2K(a)“2) [l + KRCX”~ - (1 + 2~_$2d’~)“~] (3) 

where K is the reciprocal of the Debye length (K’ = 2z2e2n/eoekT), n is the 
number density of anions or cations and R = a0 + d, the distance of close 
approach of solvent separated anion and cation. 
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Figure 1 shows the theoretical behavior of the degree of dissociation 
and the activity coefficients for three specific cases chosen for a wide range 
of K,. All three solutions show the minimum in the degree of dissociation 
discussed by Ebeling and Grigo [ 71. Also, the rise of CY following the mini- 
mum is very steep, as is implied by conductivity measurements on similar 
systems [lo]. This qualitative behavior cannot be accounted for by con- 
ventional assumptions about triple ions. The steep drop in the activity coef- 
ficient relative to that for cr = 1 shows how the activity coefficient governs 
the dissociation behavior. 

The author believes that the above work points to a picture of ion 
association and solution structure for dipolar aprotic solvents and alkali 
metal salts which is at least qualitatively consistent with spectroscopic and 
conductivity measurements. The picture is also rather simple and straight- 
forward, invoking only physically measurable contact ion pairs and a good 
theory for the thermodynamic properties of free ions. Future work will 
concentrate on the application of these concepts to conductivity theories 
appropriate to the free ion concentrations calculated by the equilibrium 
theory. The ultimate goal is to develop a basis for setting directions in elec- 
trolyte research for lithium batteries and other electrochemical problems. 
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